\(\int \sqrt {3-6 x} \sqrt {2+4 x} \, dx\) [1155]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 43 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\sqrt {\frac {3}{2}} \sqrt {1-2 x} x \sqrt {1+2 x}+\frac {1}{2} \sqrt {\frac {3}{2}} \arcsin (2 x) \]

[Out]

1/4*arcsin(2*x)*6^(1/2)+1/2*x*6^(1/2)*(1-2*x)^(1/2)*(1+2*x)^(1/2)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {38, 41, 222} \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\frac {1}{2} \sqrt {\frac {3}{2}} \arcsin (2 x)+\sqrt {\frac {3}{2}} \sqrt {1-2 x} \sqrt {2 x+1} x \]

[In]

Int[Sqrt[3 - 6*x]*Sqrt[2 + 4*x],x]

[Out]

Sqrt[3/2]*Sqrt[1 - 2*x]*x*Sqrt[1 + 2*x] + (Sqrt[3/2]*ArcSin[2*x])/2

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x*(a + b*x)^m*((c + d*x)^m/(2*m + 1))
, x] + Dist[2*a*c*(m/(2*m + 1)), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps \begin{align*} \text {integral}& = \sqrt {\frac {3}{2}} \sqrt {1-2 x} x \sqrt {1+2 x}+3 \int \frac {1}{\sqrt {3-6 x} \sqrt {2+4 x}} \, dx \\ & = \sqrt {\frac {3}{2}} \sqrt {1-2 x} x \sqrt {1+2 x}+3 \int \frac {1}{\sqrt {6-24 x^2}} \, dx \\ & = \sqrt {\frac {3}{2}} \sqrt {1-2 x} x \sqrt {1+2 x}+\frac {1}{2} \sqrt {\frac {3}{2}} \sin ^{-1}(2 x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.98 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\sqrt {\frac {3}{2}} \left (x \sqrt {1-4 x^2}+\arctan \left (\frac {\sqrt {1-4 x^2}}{1-2 x}\right )\right ) \]

[In]

Integrate[Sqrt[3 - 6*x]*Sqrt[2 + 4*x],x]

[Out]

Sqrt[3/2]*(x*Sqrt[1 - 4*x^2] + ArcTan[Sqrt[1 - 4*x^2]/(1 - 2*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(69\) vs. \(2(30)=60\).

Time = 0.36 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.63

method result size
default \(\frac {\left (2+4 x \right )^{\frac {3}{2}} \sqrt {3-6 x}}{8}-\frac {\sqrt {3-6 x}\, \sqrt {2+4 x}}{4}+\frac {\sqrt {\left (2+4 x \right ) \left (3-6 x \right )}\, \arcsin \left (2 x \right ) \sqrt {6}}{4 \sqrt {2+4 x}\, \sqrt {3-6 x}}\) \(70\)
risch \(-\frac {x \left (-1+2 x \right ) \left (1+2 x \right ) \sqrt {\left (2+4 x \right ) \left (3-6 x \right )}\, \sqrt {6}}{2 \sqrt {-\left (-1+2 x \right ) \left (1+2 x \right )}\, \sqrt {3-6 x}\, \sqrt {2+4 x}}+\frac {\sqrt {\left (2+4 x \right ) \left (3-6 x \right )}\, \arcsin \left (2 x \right ) \sqrt {6}}{4 \sqrt {2+4 x}\, \sqrt {3-6 x}}\) \(95\)

[In]

int((3-6*x)^(1/2)*(2+4*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8*(2+4*x)^(3/2)*(3-6*x)^(1/2)-1/4*(3-6*x)^(1/2)*(2+4*x)^(1/2)+1/4*((2+4*x)*(3-6*x))^(1/2)/(2+4*x)^(1/2)/(3-6
*x)^(1/2)*arcsin(2*x)*6^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.21 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\frac {1}{2} \, \sqrt {4 \, x + 2} x \sqrt {-6 \, x + 3} - \frac {1}{4} \, \sqrt {3} \sqrt {2} \arctan \left (\frac {\sqrt {3} \sqrt {2} \sqrt {4 \, x + 2} \sqrt {-6 \, x + 3}}{12 \, x}\right ) \]

[In]

integrate((3-6*x)^(1/2)*(2+4*x)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(4*x + 2)*x*sqrt(-6*x + 3) - 1/4*sqrt(3)*sqrt(2)*arctan(1/12*sqrt(3)*sqrt(2)*sqrt(4*x + 2)*sqrt(-6*x +
 3)/x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.78 (sec) , antiderivative size = 187, normalized size of antiderivative = 4.35 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\begin {cases} - \frac {\sqrt {6} i \operatorname {acosh}{\left (\sqrt {x + \frac {1}{2}} \right )}}{2} + \frac {\sqrt {6} i \left (x + \frac {1}{2}\right )^{\frac {5}{2}}}{\sqrt {x - \frac {1}{2}}} - \frac {3 \sqrt {6} i \left (x + \frac {1}{2}\right )^{\frac {3}{2}}}{2 \sqrt {x - \frac {1}{2}}} + \frac {\sqrt {6} i \sqrt {x + \frac {1}{2}}}{2 \sqrt {x - \frac {1}{2}}} & \text {for}\: \left |{x + \frac {1}{2}}\right | > 1 \\\frac {\sqrt {6} \operatorname {asin}{\left (\sqrt {x + \frac {1}{2}} \right )}}{2} - \frac {\sqrt {6} \left (x + \frac {1}{2}\right )^{\frac {5}{2}}}{\sqrt {\frac {1}{2} - x}} + \frac {3 \sqrt {6} \left (x + \frac {1}{2}\right )^{\frac {3}{2}}}{2 \sqrt {\frac {1}{2} - x}} - \frac {\sqrt {6} \sqrt {x + \frac {1}{2}}}{2 \sqrt {\frac {1}{2} - x}} & \text {otherwise} \end {cases} \]

[In]

integrate((3-6*x)**(1/2)*(2+4*x)**(1/2),x)

[Out]

Piecewise((-sqrt(6)*I*acosh(sqrt(x + 1/2))/2 + sqrt(6)*I*(x + 1/2)**(5/2)/sqrt(x - 1/2) - 3*sqrt(6)*I*(x + 1/2
)**(3/2)/(2*sqrt(x - 1/2)) + sqrt(6)*I*sqrt(x + 1/2)/(2*sqrt(x - 1/2)), Abs(x + 1/2) > 1), (sqrt(6)*asin(sqrt(
x + 1/2))/2 - sqrt(6)*(x + 1/2)**(5/2)/sqrt(1/2 - x) + 3*sqrt(6)*(x + 1/2)**(3/2)/(2*sqrt(1/2 - x)) - sqrt(6)*
sqrt(x + 1/2)/(2*sqrt(1/2 - x)), True))

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.51 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\frac {1}{2} \, \sqrt {-24 \, x^{2} + 6} x + \frac {1}{4} \, \sqrt {6} \arcsin \left (2 \, x\right ) \]

[In]

integrate((3-6*x)^(1/2)*(2+4*x)^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(-24*x^2 + 6)*x + 1/4*sqrt(6)*arcsin(2*x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.28 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\frac {1}{2} \, \sqrt {3} \sqrt {2} {\left (\sqrt {2 \, x + 1} {\left (x - 1\right )} \sqrt {-2 \, x + 1} + \sqrt {2 \, x + 1} \sqrt {-2 \, x + 1} + \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {2 \, x + 1}\right )\right )} \]

[In]

integrate((3-6*x)^(1/2)*(2+4*x)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(3)*sqrt(2)*(sqrt(2*x + 1)*(x - 1)*sqrt(-2*x + 1) + sqrt(2*x + 1)*sqrt(-2*x + 1) + arcsin(1/2*sqrt(2)*
sqrt(2*x + 1)))

Mupad [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.02 \[ \int \sqrt {3-6 x} \sqrt {2+4 x} \, dx=\frac {x\,\sqrt {4\,x+2}\,\sqrt {3-6\,x}}{2}-\frac {\sqrt {6}\,\ln \left (x-\frac {\sqrt {1-2\,x}\,\sqrt {2\,x+1}\,1{}\mathrm {i}}{2}\right )\,1{}\mathrm {i}}{4} \]

[In]

int((4*x + 2)^(1/2)*(3 - 6*x)^(1/2),x)

[Out]

(x*(4*x + 2)^(1/2)*(3 - 6*x)^(1/2))/2 - (6^(1/2)*log(x - ((1 - 2*x)^(1/2)*(2*x + 1)^(1/2)*1i)/2)*1i)/4